Cho \(x,y>0;xy=1\) . Tìm Min \(Q=\left(x+y+1\right)\left(x^2+y^2\right)+\dfrac{1}{x+y}\)
Cho \(x;y;z>0\)Tìm Min và Max
\(A=\frac{\left(x-y\right)\left(1-xy\right)}{\left(1+x^2\right)\left(1+y^2\right)}\)
cho A=\(\left(\frac{x}{y^2+xy}-\frac{x-y}{x^2+xy}\right):\left(\frac{y^2}{x^3-xy^2}+\frac{1}{x+y}\right):\frac{x}{y}\)
a) tìm TXĐ của A
b) tìm x,y để A>1 và y<0
Cho \(x;y\ge0\)\(.\)Tìm Min và Max
\(A=\frac{\left(x-y\right)\left(1-xy\right)}{\left(x^2+1\right)\left(y^2+1\right)}\)
Cho biểu thức : \(P=\frac{2}{x}-\left(\frac{x^2}{x^2-xy}+\frac{x^2-y^2}{xy}-\frac{y^2}{y^2-xy}\right):\frac{x^2-xy+y^2}{x-y}\)
a) Rút gọn P
b)Tìm giá trị của B với \(\left|2x-1\right|=1\)và \(\left|y+1\right|=\frac{1}{2}\)
Cho \(P=\frac{2}{x}-\left(\frac{x^2}{x^2-xy}+\frac{x^2-y^2}{xy}-\frac{y^2}{y^2-xy}\right):\frac{x^2-xy+y^2}{x-y}\)
a) Tìm điều kiện xác định và rút gọn P
b) Tính giá trị của P với \(\left|2x-1\right|=1\)và \(\left|y+1\right|=\frac{1}{2}\)
Tìm điều kiện của x , y để biểu thức A lớn hơn 1 :
\(A=\left(\frac{x}{y^2+xy}-\frac{x-y}{x^2+xy}\right):\left(\frac{y^2}{x^3-xy^2}+\frac{1}{x+y}\right):\frac{x}{y}\)
1) Giá trị nhỏ nhất của \(A=\frac{a^2+b^2}{ab}\)
2) Giá trị của \(P=\frac{xy}{\left|xy\right|}+\frac{x-y}{\left|x-y\right|}\left(\frac{x}{\left|x\right|}+\frac{y}{\left|y\right|}\right)\) với xy < 0 là P=?
1.tìm các nghiem nguyen cua phuong trinh: 54x^3+1=y^3
2.cho x+y=1 và xy khac 0.chung mih \(\frac{x}{y^3-1}+\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)
3.cho a,b,c la cac so thuc duong.chung minh :\(\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)^2+\frac{14abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge4\)