a). -121
b). Casio hoặc Phan Đăng Nhật Minh
a) \(\left(x-y\right)^2=7^2=49\)
\(\Leftrightarrow x^2-2xy+y^2=49\)
\(\Leftrightarrow x^2+y^2=49+2xy\)
\(\Leftrightarrow x^2+y^2=49+2\cdot60=169\)
Mặt khác : \(\left(x+y\right)^2=x^2+2xy+y^2=169+2\cdot60=289=\left(\pm17\right)^2\)
Mà \(x>0;y>0\)nên \(x+y=17\)
Vậy : \(x^2-y^2=\left(x-y\right)\left(x+y\right)=7\cdot17=119\)
b) \(\left(x-y\right)^4=7^4=2401\)
\(\Leftrightarrow x^4-4x^3y+6x^2y^2-4xy^3+y^4=2401\)
\(\Leftrightarrow x^4+y^4=2401+4x^3y-6x^2y^2+4xy^3\)
\(\Leftrightarrow x^4+y^4=2401+2xy\left(2x^2-3xy+2y^2\right)\)
\(\Leftrightarrow x^4+y^4=2401+2\cdot60\cdot\left[2\left(x^2+y^2\right)-3\cdot60\right]\)
Từ câu a) ta có \(x^2+y^2=169\)
Từ đó : \(x^4+y^4=2401+120\cdot\left(2\cdot169-180\right)\)
\(x^4+y^4=2401+120\cdot158\)
\(x^4+y^4=2559\)
Vậy.........