a) \(x^2-y^2=\left(x-y\right)\left(x+y\right)=7.\left(x+y\right)\)
ta có: \(\left(x-y\right)^2=49\Leftrightarrow x^2+y^2-2xy=49\Leftrightarrow\left(x^2+y^2+2xy\right)-4xy=49\Leftrightarrow\left(x+y\right)^2=289\Leftrightarrow x+y=17\)
=> A= 7.17=119
b) \(x^4+y^4=\left(x+y\right)^4-\left(4x^3y+6x^2y^2+4xy^3\right)=17^4-2xy\left(2x^2+3xy+2y^2\right)=17^4-120\left[2\left(x^2+y^2\right)+3.60\right]\)
\(=17^4-120\left[2\left(x^2+y^2\right)+3.60\right]==17^4-120\left[2.119+3.60\right]=33361\)
Từ x-y=7 xy=60=>(x-y)2+2xy=72+2.60=>x2+y2=169
=>(x-y)2+4xy=72+4.60
=>x2-2xy+y2+4xy=49+240
=>(x+y)2=289
=>x+y=17 hoặc x+y=-17
a)x2-y2=(x-y)(x+y)=7(x+y)
*)x+y=17=>x2-y2=7.17=119
*)x+y=-17=>x2-y2=7.(-17)=-119
b)Ta có:(x+y)4=174=(-17)4=83521
=>x4+y4+4x3y+4xy3+6x2y2=83521
=>x4+y4+4xy(x2+y2)+6.(602)=83521
=>x4+y4+4.60.169+21600=83521
=>x4+y4+62160=83521
=>x4+y4=21361