1/ Cho \(x+y+x=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)( x,y,z>0). Chứng minh rằng: x=y=z
2/ Cho hai số thực x,y thỏa mãn: xy=1 và x>y. Chứng minh rằng: \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
3/ Chứng minh rằng \(a+b\ge2\sqrt{ab}\)
Giúp mình với!
1/ Cho $$( x,y,z>0). Chứng minh rằng: x=y=z
2/ Cho hai số thực x,y thỏa mãn: xy=1 và x>y. Chứng minh rằng: \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
3/ Chứng minh rằng \(a+b\ge2\sqrt{ab}\)
Giúp mình với!
Cho x,y thỏa mãn x > y và xy = 1
Chứng minh rằng: \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
Cho xy =1 và x > y
Chứng minh rằng :
\(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
Cho xy = 1 và x > y. Chứng minh rằng:
\(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
Cho x > y và xy = 1. Chứng minh: \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
a) Với mọi x,y,z chứng minh rằng: \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
b) Cho \(xy=1\) và \(x>y\).Chứng minh: \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
Giúp minh với
Cho \(x>y\)và \(xy=1\)
Chứng minh \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
Cho x và y là 2 số trái dấu. Chứng minh rằng: \(\frac{xy-x^2}{\sqrt{-\frac{x}{y}}}=\frac{xy-y^2}{\sqrt{-\frac{y}{x}}}\)