TH1 x>y
Ta có (xy+1)2=x^2.y^2+2xy+1>x2y2+x−y>x^2.y^2
Do đó loại vì x^2.y^2 làSCP.
TH2 x<y cm tương tự, loại.
Do đó x=y.
TH1 x>y
Ta có (xy+1)2=x^2.y^2+2xy+1>x2y2+x−y>x^2.y^2
Do đó loại vì x^2.y^2 làSCP.
TH2 x<y cm tương tự, loại.
Do đó x=y.
chp x,y thuộc N sao thỏa mãn A = x^2 . y^2 + x - y . Cmr x=y
mik cần gấp
Cho các số x,y thuộc tập n thỏa mãn (x + y - 3)^ 2018 + 2018x (2x - 4)^2020 = 0
Tính giá trị của biểu thức S = (x -1)^2019 +( 2 - y)^2019 = 2018
1. Số các cặp số nguyên (x,y) thoả mãn x+y+xy=3 là .....
2. Số phần tử của tập hợp các số x thỏa mãn lx-2,5l + l3,5 - xl = 0 là {
3. Số cặp số dương a và b thỏa mãn 1/a - 1/b =1/a-b là
4. cho (x,y) thỏa mãn 2x-3y/x+2y=2/3.Giá trị của tỉ số y/x bằng ...
Từ hai tập hợp \(X\in[22,23,24,25]\)và \(Y=[2,3,4,5]\)có thể tìm được hay ko một hàm số biểu thị sự tương quan cặp số(x,y) thỏa mãn x thuộc X và y thuộc Y sao cho x+y chia hết cho 27
Bài 1. Tìm tất cả các số x, y thuộc Z+ thỏa mãn:
a) \(2 + \sqrt{x+y} = \sqrt{x} + \sqrt{y} \)
b) \({x \over{5}} + \sqrt{3x - 1} = \sqrt{2y + 8} + {y\over{3}} \)
Bài 2. Cho tập A gồm 2018 số thực phân biệt thỏa mãn với mọi a, b; a khác b thì: \(a^2 + b\sqrt{2}\) thuộc Q. CMR: với mọi a thuộc A thì \(a\sqrt{2}\) thuộc Q
cho x,y,z,t là các số nguyên dương thỏa mãn x^2+z^2=y^2+t^2 CMR : x+y+z+t chia hết cho 2
cho x,y,z thỏa mãn x^2=yz,y^2=xy,z^2xy cmr x=y=z
cho A là một tập hợp gồm 607 số nguyên dương đôi một khác nhau và mỗi số nhỏ hơn 2021. Chứng minh rằng trong tập hợp A luôn tìm được hai phần tử x,y (x>y) thỏa mãn x-y ϵ \(\left\{3,6,9\right\}\)
cho 3 số thỏa mãn x/1998=y/1999=z/2000.
a)CMR: (x-z)3=8(x-y)2(y-z)
b)CMR: nếu 2(x+y)=5(y+z)=3(z+x) thì x-y/4=y-z/5