Cho x , y, z > 0 thoa man: \(x+y+z=\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)
Tính: \(\frac{\sqrt{x}}{1+x}+\frac{\sqrt{y}}{1+y}+\frac{\sqrt{z}}{1+z}\)
cho x,y thoa man
\(\left(\sqrt{x^2+1}-x\right)\)\(\left(\sqrt{y^2+1}-y\right)\)
CM; x+y=0
cho cac so thuc x va y thoa man
\(\left(x^2+\sqrt{1+x^2}\right)\left(y^2+\sqrt{1+y^2}\right)=1\)1
chung minh x+y=0
1. Tim x,y,z biet: \(\frac{1}{2}\left(x+y+z\right)-3=\sqrt{x-2}+\sqrt{y-3}+\sqrt{z-4}\)
2. Chox,y,z > 0 thoa man \(x+y+z+\sqrt{xyz}=4\) . Tinh \(A=\sqrt{x\left(4-y\right)\left(4-z\right)+\sqrt{y\left(4-z\right)\left(4-x\right)}+\sqrt{z\left(4-x\right)\left(4-y\right)}-\sqrt{xyz}}\)
Cho x,y,z > 0 thỏa \(x^3+y^3+z^3=1\)
CM: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}>2\)
1) Cho x;y>0 thoả mãn x+y=1 Tìm max B = \(x^2y^3\)
2) Cho x+y>0 thoả man x-y >= 1 Tìm max C = \(\frac{4}{x}-\frac{1}{y}\)
3) Tìm min M = \(\frac{x-3}{\sqrt{x-1}-\sqrt{x}}\)
Rút gọn:
a/ \(\frac{\left(\sqrt{x^2+9}-3\right)\left(\sqrt{x^2+9}+3\right)\left(x+\sqrt{xy}+y\right)\sqrt{x-2\sqrt{xy}+y}}{x\left(x\sqrt{x}-y\sqrt{y}\right)}\) (với x>0, y\(\ge\)0, x\(\ne\)y
b/ \(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)(với x>0 và x\(\ne\)1
c/ \(\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)(với x>0 và x\(\ne\)1
. Cho các số thực x,y thỏa mãn 0<x<1, 0<y<1 Chứng minh rằng \(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{3\sqrt{3}}{2}\)
1/ cho x,y>0.CM
\(\frac{x\sqrt{y}+y\sqrt{x}}{x+y}-\frac{x+y}{2}\le\frac{1}{4}\)
2/ giải pt \(x^2-6x+4+2\sqrt{2x-1}=0\)