Ta có \(31.\left(x+2y\right)=31x+2y=5.\left(6x+11y\right)+\left(x+7y\right)\)
Do 6x + 11y chia hết cho 31 nên \(5.\left(6x+11y\right)\) chia hét cho 31.
\(\Rightarrow\) x + 7y chia hết cho 31 (đpcm).
Ta có \(31.\left(x+2y\right)=31x+2y=5.\left(6x+11y\right)+\left(x+7y\right)\)
Do 6x + 11y chia hết cho 31 nên \(5.\left(6x+11y\right)\) chia hét cho 31.
\(\Rightarrow\) x + 7y chia hết cho 31 (đpcm).
Cho x,y là số nguyên, chứng minh rằng 6x + 11y chia hết cho 31 khi và chỉ khi x + 7y chia hết cho 31
Cho x, y là các số nguyên. Chứng tỏ rằng nếu 6x + 11y chia hết cho 31 thì x + 7y chia hết cho 31. Điều ngược lại có đúng không?
Các bạn giúp mình vs!!!!
Cho x,y thuộc Z. Chứng minh rằng (6x+11y) chia hết cho 31 khi và chỉ khi (x+7y) chia hết cho 31
Cho x,y là số nguyên, CMR 6x +11y chia hết cho 31 khi và chỉ khi x+7y chia hết cho 31 ?
a,Tìm các số nguyên x sao cho 4x+3 chia hết cho x+2
b, Tìm số nguyên x,y biết 3xy-2x-3y=5
c, Tìm các số nguyên n biết : n-2 là ước của 2n+1
d, Cho x,y là các số nguyên . Chứng tỏ rằng 6x+11y là bội của 31 khi và chỉ khi x+7y là bội của 31
( Mình đang cần rất gấp , bạn nào xong trước mình sẽ tick! )
chứng minh rằng 6x+11y chia hết cho 31 x,y là số nguyên thì x+7y cũng chia hết cho 31
Cho x; y là các số tự nhiên thoả mãn (6x+11y) chia hết cho 31. Chứng minh rằng (x+7y) chia hết cho 31?
Bài 1: Tìm x£Z biết
a) x^2+3x+9 chia hết cho x+3
Bài 2: Chứng minh rằng với x,y£Z thì
a) 6x+11y chia hết cho 31 thì x+7y chia hết cho 31
b) 5x+47y chia hết cho 31 thì x+6y chia hết cho 17
Mik cần gấp
Cảm ơn các bạn nhiều ❤❤❤
Mik tik cho nha
cho x;y là các số nguyên . Chứng tỏ rằng 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31 . Điều ngược lại có đúng không ?