Cho hai số thực dương x,y thỏa mãn x+y>=3 . Tìm GTNN của biểu thức
P=\(^{2x^2+y^2+\frac{28}{x}+\frac{1}{y}}\)
Cho các số thực dương x, y thỏa mãn 2x2 + 3y2 = 5xy. Tính giá trị của biểu thức \(\frac{\text{x + 2y}}{\text{3x - y}}\)
Cho x , y , z là các số thực dương thỏa mãn 3(x4 + y4 + z4 ) - 7( x2 + y2 + z2 ) + 12 = 0 .
Tìm GTNN của biểu thức \(P=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}\)
xho x, y, z là các số dương thoả mãn x^2+y^2+z^2>=1/3
Tìm GTNN của biểu thức
\(A=\frac{x^3}{2x+3y+5z}+\frac{y^3}{2y+3z+5x}+\frac{z^3}{2z+3x+5y}\)
Cho hai số dương x,y thỏa mãn x+y=4
Tìm GTNN của biểu thức: A=\(\frac{1}{x^2+y^2}\)+\(\frac{1}{xy}\)
cho các số thực dương X,y thỏa mãn x<y và\(3x^2\)+\(2y^2\)=5xy.Tính giá trị của biểu thức S=\(\dfrac{y+2x}{y-2x}\)
1. cho x,y là các số dương thỏa mãn x + y < (h) = 1 .Tìm giá trị nhỏ nhất của biểu thức : A= \(\frac{1}{x^3+3xy^2}\)+\(\frac{1}{y^3+3x^2y}\)
2. a phân tích thành nhân tử (x+y)^2-(x+y)-6
b tìm các cặp giá trị (x;y) nguyên thỏa mãn phương trình sau:
2x^2 -x(2y-1)=y+12
b1. Cho biểu thức \(A=\left(\frac{4x}{2+x}+\frac{8x^2}{4-x^2}\right):\left(\frac{x-1}{x^2-2x}-\frac{2}{x}\right)\)rút gọn A và tìm giá trị của x để A<0
b2. a) Tìm các số nguyên x, y thỏa mãn \(x^3+3x=x^2y+2y+5\)
b)tìm các số nguyên x; y thỏa mãn \(18x^2-3xy-5y=25\)
b3. cho các số thực a, b, c thỏa mãn \(a^2+b^2+c^2\le8\). Tìm GTNN của biểu thức sau: S= 2016ac-ab-bc
lm hộ mk vsss mn
Tìm GTNN của : \(D=3x^2+y^2+\frac{8y}{x}+\frac{4x}{y}-3x+2y+12\)12
biết:\(x+y\ge4\)