Đề sai rồi: nếu y > x thì làm sao x - y = 7 ????
Đề sai rồi: nếu y > x thì làm sao x - y = 7 ????
Cho x;y là các số nguyên thỏa mãn x2 - 2y = xy và y khác 0, x+y khác 0. Khi đó giá trị lớn nhất của biểu thức \(Q=\frac{x-y}{x+y}\)bằng:
Cho x, y là hai số thoả mãn 0<x<y , y - x = 7 và xy = 60
khi đó x+y=?
Các bạn chỉ cho mik cách làm với. Cảm ơn các bạn
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
1.Tìm các số nguyên x và y thỏa manc 6xy+4x-9y-7=0
2.Tìm giá trị nhỏ nhất của biểu thức A=x3+y3+xy,trong đó x,y là các số dương thỏa mãn điều kiện x+y=1
Cho hai số thực x và y thỏa mãn x, y > 0 và xy = 1.
Tìm giá trị nhỏ nhất của biểu thức A = \(\dfrac{1}{(1+x)^2} + \dfrac{1}{(1+y)^2}\)
Cho hai số x,y thỏa mãn xy+x+y=−1 và x^2 y + xy^ 2 = − 12 .Giá trị biểu thức A = x^3 + y^3 bằng
Cho hai số thỏa mãn xy+x+y=7 và x2y+xy2=10 .Tính giá trị biểu thức A= x3+y3
1)cho 2 số x,y thỏa mãn xy+x+y=7 và x^2y +xy^2= 10
tính giá trị biểu thức A= x^3 +y^3
2)tìm bộ 3 x,y,z thỏa mãn:
x-y-z+3=0 và x^2-y^2-z^2 =1
các bạn làm giúp m nha!!!
Cho x,y là các số thực dương thỏa mãn điều kiện x+y-6xy=0 và xy≠1. Tìm giá trị lớn nhất của
M=\(\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1-\dfrac{xy+x}{xy-1}-\dfrac{x+1}{xy+1}}\)