Vì x > y nên 2 vế đều là số dương. Bình phương 2 vế được
\(x+y-2\sqrt{xy}< x-y\)
\(\Leftrightarrow2\sqrt{xy}-2y>0\)
\(\Leftrightarrow\sqrt{xy}-y>0\)
\(\Leftrightarrow\sqrt{y}.\left(\sqrt{x}-\sqrt{y}\right)>0\) (đúng)
Vậy \(\sqrt{x}-\sqrt{y}< \sqrt{x-y}\)