Ta có : \(3y^2+1=4x^2\)
\(\Leftrightarrow3y^2=4x^2-1\)
\(\Leftrightarrow3y^2=\left(2x+1\right)\left(2x-1\right)\)
Mà : \(2x+1\) và \(2x-1\) nguyên tố cùng nhau
\(\Rightarrow\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\) hoặc \(\Rightarrow\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\)
TH 1 : \(\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\). Ta có : \(n^2=3m^2+2\equiv2\left(mod3\right)\) ( loại )
TH 2 : \(\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\) . Dễ thấy m lẻ \(\Rightarrow m=2k+1\)
Khi đo s: \(2x-1=\left(2k+1\right)^2\)
\(\Rightarrow x^2=k^2+\left(k+1\right)^2\) ( đpcm )
Tại sao 2x+1 và 2x-1 lại nguyên tố cùng nhau vậy bạn?
Chứng minh nó nguyên tố :
Đặt \(\left(2x-1,2x+1\right)=d\)
Khi đó : \(\hept{\begin{cases}2x-1⋮d\\2x+1⋮d\end{cases}}\) \(\Rightarrow2⋮d\Rightarrow d\in\left\{1,2\right\}\)
Mà : \(2x-1⋮̸2\)
Vì vậy : \(d=1\)