Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Uzumaki Naruto

cho x,y là các số thực thoả mãn \(2x^2-xy+y^2=1.\)Tìm  GTNN của biểu thức \(M=x^2-xy+y^2\)

Nguyễn Linh Chi
27 tháng 3 2020 lúc 12:19

Với y = 0 ta có: \(x^2=\frac{1}{2}\)=> M = 1/2 (1)

Với y khác 0

Ta có: \(M=x^2-xy+y^2=\frac{x^2-xy+y^2}{2x^2-xy+y^2}=\frac{\left(\frac{x}{y}\right)^2-\frac{x}{y}+1}{2\left(\frac{x}{y}\right)^2-\frac{x}{y}+1}\)

Đặt: \(\frac{x}{y}=t\)

Ta có: \(M=\frac{t^2-t+1}{2t^2-t+1}\Leftrightarrow\left(2M-1\right)t^2+\left(1-M\right)t+M-1=0\)(1)

+) Nếu 2M - 1 = 0 <=> M = 1/2 (2) 

khi đó: t = 1

+) Nếu M khác 1/2

(1) có \(\Delta=\left(1-M\right)^2-4\left(2M-1\right)\left(M-1\right)=-7M+10M-3\)

Để (1) có nghiệm thì \(\Delta\ge0\)<=> \(\frac{3}{7}\le M\le1\)(3)

Từ (1); (2); (3) ta có GTNN của M = 3/7 

Dấu "=" xảy ra <=> t = 2 hay \(\frac{x}{y}=2\Leftrightarrow x=2y\)

Thay vào \(2x^2-xy+y^2=1.\) ta có: \(8y^2-2y^2+y^2=1.\)

<=> \(y=\pm\frac{1}{\sqrt{7}}\)

Với \(y=\frac{1}{\sqrt{7}}\Rightarrow x=\frac{2}{\sqrt{7}}\)

Với \(y=\frac{-1}{\sqrt{7}}\Rightarrow x=\frac{-2}{\sqrt{7}}\)

Kết luận vậy min M = 1 tại ( x ; y ) \(\in\left\{\left(\frac{2}{\sqrt{7}};\frac{1}{\sqrt{7}}\right);\left(\frac{-2}{\sqrt{7}};\frac{-1}{\sqrt{7}}\right)\right\}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Hung Trieu
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
lê hồng thanh hường
Xem chi tiết
hoàng
Xem chi tiết
Nguyễn Hoàng Thanh
Xem chi tiết
Nguyễn Thị Mai Anh
Xem chi tiết
Itachi Uchiha
Xem chi tiết
Min
Xem chi tiết
lộc phạm
Xem chi tiết