\(Q\ge\left(x+y+1\right).2xy+\frac{1}{x+y}\)
\(Q\ge2\left(x+y\right)+\frac{1}{x+y}+2\)
\(Q\ge\frac{x+y}{4}+\frac{1}{x+y}+\frac{7}{4}\left(x+y\right)+2\)
\(Q\ge2\sqrt{\frac{x+y}{4\left(x+y\right)}}+\frac{7}{4}.2\sqrt{xy}+2=\frac{13}{2}\)
\(Q_{min}=\frac{13}{2}\) khi \(x=y=1\)