Ôn tập chương 1: Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sakura

a)Chứng minh rằng \(\left[\frac{1-x\sqrt{x}}{1-\sqrt{x}}\right].\left[\frac{1-\sqrt{x}}{1-x}\right]^2=1\)với \(x\ge0\)\(x\ne1\)

b)So sánh \(\sqrt{2012}-\sqrt{2011}\)\(\sqrt{2011}-\sqrt{2010}\)

c)Rút gọn biểu thức A=\(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\) với \(x\ge0,y\ge0,x\ne y\)

d)Tìm giá trị lớn nhất của biểu thức M=\(\sqrt{x-1}+\sqrt{9-x}\)

Nguyễn Việt Lâm
9 tháng 7 2019 lúc 18:02

\(\left[\frac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{1-\sqrt{x}}\right]\left[\frac{1-\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right]^2=\left(x+\sqrt{x}+1\right)\frac{1}{\left(1+\sqrt{x}\right)^2}=\frac{x+\sqrt{x}+1}{x+2\sqrt{x}+1}\)

Đề bài sai

\(\sqrt{2012}-\sqrt{2011}=\frac{1}{\sqrt{2012}+\sqrt{2011}}\)

\(\sqrt{2011}-\sqrt{2010}=\frac{1}{\sqrt{2011}+\sqrt{2010}}\)

Do \(\sqrt{2012}>\sqrt{2010}\) \(\Rightarrow\sqrt{2012}+\sqrt{2011}>\sqrt{2011}+\sqrt{2010}>0\)

\(\Rightarrow\frac{1}{\sqrt{2012}+\sqrt{2011}}< \frac{1}{\sqrt{2011}+\sqrt{2010}}\Rightarrow\sqrt{2012}-\sqrt{2011}< \sqrt{2011}-\sqrt{2010}\)

\(A=\frac{x+2\sqrt{xy}+y-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)

\(=\sqrt{x}-\sqrt{y}+\sqrt{x}-\sqrt{y}=2\sqrt{x}-2\sqrt{y}\)

\(M^2=\left(\sqrt{x-1}+\sqrt{9-x}\right)^2\le2\left(x-1+9-x\right)=16\)

\(\Rightarrow M\le4\Rightarrow M_{max}=4\) khi \(x-1=9-x\Leftrightarrow x=5\)


Các câu hỏi tương tự
Quách Trần Gia Lạc
Xem chi tiết
N.H Nguyễn
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Trần Thị Tú Anh 8B
Xem chi tiết
CandyK
Xem chi tiết
Nhan Thanh
Xem chi tiết
Trần Thanh
Xem chi tiết
Alice dono
Xem chi tiết
Trương Nguyên Đại Thắng
Xem chi tiết