Cho x,y,z là các số thực dương thoả mãn xy+yz+zx+2xyz=1. Chứng minh rằng : x+y+z>=3/2
Cho x,y là các số thực dương thỏa mãn: (x+1)(y+1)=4xy
Chứng minh rằng: \(\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}\le1\)
1) Cho x,y,z>0 thoả mãn : xyz<=1. Chứng minh rằng: \(\frac{x\left(1-y^3\right)}{y^3}\)+ \(\frac{y\left(1-z^3\right)}{z^3}\)+\(\frac{z\left(1-x^3\right)}{x^3}\)>=0
2) Cho x, y, z là các số thực dương thỏa mãn x ≥ z. CMR: xz /(y^2 + yz) + y^2 / (xz + yz) + (x + 2z)/(x + z) ≥ 5/2
Cho các số thực x,y thoả mãn điều kiện x2+5y2+2y-4xy-3=0
Chứng Minh Rằng : |x-2y| \(\le\) 2
Cho các số thực dương x,y thỏa mãn x+y=2.Chứng minh rằng x/(1+y^2)+y/(1+x^2)>=1
cho x,y là các số thực dương thỏa mãn (x+1)(y+1)=4xy. chứng minh \(\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}\le1\)
Cho các số x,y > 0 thoả mãn x+y=1. Chứng minh rằng : (x + 1/y)^2 + (y+1/x)^2 >=25
cho các số dương x, y thỏa mãn \(\dfrac{1}{x}+\dfrac{2}{y}=2\)
Tìm GTNN của A= \(5x^2+y-4xy+y^2\)
Cho 2 số thực dương x,y thoả mãn 4xy=1. Tìm GTNN của biểu thức \(M=\frac{2x^2+2y^2+12xy}{x+y}\)