Cho x, y là các số thực khác 0 thỏa mãn: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A= 2016+ xy
Cho x,y là các số khác 0 thỏa mãn \(8+\frac{8}{x^2}+\frac{y^2}{8}=8\)
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=xy+2024
Cho x,y là hai số thực khác 0 thỏa mãn \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=3\). Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(B=2020+xy\)
A.Giải phương trình nghiệm nguyên: x2+xy-2x+1=x+y
B. Co x,y là các số thực khác 0 tỏa mãn: x2-2xy+2y2-2x-2y+5=0. Tính giá trị của biểu thức P=\(\frac{xy+x+y+13}{4xy}=0\)
Bài 1:Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=x^2+y^2/x^2+xy+4y^2 với x2+xy+4y^2 khác 0.Bài 2:Với x;y thỏa mãn điều kiện x^2+y^2=1.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=2(xy+y^2)/1+2x^2+2xy.Giúp mik nhé mai mik đi hc r
Cho x,y,z là các số khác 0 và đôi một khác nhau thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\). Tính giá trị biểu thức \(M=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
cho x,y là các số thực khác 0, thỏa mãn x^2+2y^2=3xy Tính giá trị biểu thức A=\(\frac{2018xy}{x^2+y^2}\)
1. cho x,y là các số nguyên tố thỏa mãn x2-2y=xy và y≠ 0 ; x+y≠ 0. khi đó giá trị lớn nhất của biểu thức Q= \(\frac{x-y}{x+y}\)
2.cho \(\left(x-\frac{1}{x}\right):\left(x+\frac{1}{x}\right)=3\). ket qua cua phep chia \(\left(x^2-\frac{1}{x^2}\right):\left(x^2+\frac{1}{x^2}\right)\)=?
B1 cho các số nguyên a,b,c,d thỏa mãn đồng thời 2 điều kiện sau a+b+c=d+1 và a^2+b^2+c^2=d^2+2d-1 chứng minh rằng (a^2+1)(b^2+1)(c^2+1) là số chính phương
B2 cho biểu thức A=\(\frac{x^2}{y^2+xy}\)-\(\frac{y^2}{x^2-xy}\)-\(\frac{x^2+y^2}{xy}\)(xy\(\ne\)0,y\(\ne\)+-x)
A) rút gọn A
b)tính giá trị của A^2 biết x,y thỏa mãn điều kiện x^2+y^2=3xy
c) chứng minh rằng biểu thức A không nhân giá trị nguyên với mọi giá trị nguyên của x,y thỏa mãn điều kiện ở trên
B3 tìm các cặp số (x;y) thỏa mãn điều kiện 4x^2+2y^2-4xy-16x-2y+41=0