Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Lê Bảo Ngọc

Cho x,y dương thỏa mãn \(x^2+y^2=2\). Tìm giá trị nhỏ nhất  \(P=\frac{x^2}{\sqrt{y}}+\frac{y^2}{\sqrt{x}}\)

Mr Lazy
12 tháng 8 2016 lúc 15:58

Ta chứng minh \(P\ge2\Leftrightarrow x^2\sqrt{x}+y^2\sqrt{y}\ge2\sqrt{xy}\)

Thay \(2=x^2+y^2\) thì bđt trở thành \(x^2\sqrt{x}+y^2\sqrt{y}\ge\left(x^2+y^2\right)\sqrt{xy}\)

\(\Leftrightarrow x^2\sqrt{x}\left(1-\sqrt{y}\right)+y^2\sqrt{y}\left(1-\sqrt{x}\right)\ge0\)

+TH1: \(\sqrt{x}=1\Leftrightarrow x=1\Rightarrow y=1\) thì VT = 0, bđt thỏa mãn

+TH2: \(x>1\)

bđt \(\Leftrightarrow x^2\sqrt{x}\left(1-\sqrt{y}\right)\ge y^2\sqrt{y}\left(\sqrt{x}-1\right)\text{ (*)}\)

Từ \(x>1\), ta có: \(y=\sqrt{2-x^2}< 1\)

\(\Rightarrow x>y\Rightarrow x^2\sqrt{x}>y^2\sqrt{y}>0\text{ (1)}\)

Cần chứng minh \(1-\sqrt{y}\ge\sqrt{x}-1>0\text{ (2)}\) là bđt sẽ được chứng minh

(2) \(\Leftrightarrow\sqrt{x}+\sqrt{y}< 2\)

Thật vậy, ta có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}=2\Rightarrow\sqrt{x}+\sqrt{y}\le\sqrt{2\left(x+y\right)}\le2\)

Từ (1) và (2) suy ra (*) đúng.

+TH3: chứng minh tương tự TH2, chỉ đảo lại y và x.

Vậy \(P\ge2\). Dấu bằng đạt được tại x = y = 1.


Các câu hỏi tương tự
Giao Khánh Linh
Xem chi tiết
๖ۣۜLuyri Vũ๖ۣۜ
Xem chi tiết
Ngô Minh Tâm
Xem chi tiết
Blue Moon
Xem chi tiết
Minh minh
Xem chi tiết
nguyen van bi
Xem chi tiết
Minh Khôi
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
Phương Hà
Xem chi tiết