Đặt \(A=x^2y^3=y^3\left(1-y\right)^2=\frac{4}{9}y^3.\frac{9}{4}\left(1-y\right)^2=\frac{4}{9}y^3.\left(\frac{3}{2}-\frac{3}{2}y\right)^2\)
\(=\frac{4}{9}.y.y.y.\left(\frac{3}{2}-\frac{3}{2}y\right)\left(\frac{3}{2}-\frac{3}{2}y\right)\le\frac{4}{9}.\frac{\left(y+y+y+\frac{3}{2}-\frac{3}{2}y+\frac{3}{2}-\frac{3}{2}y\right)^5}{5^5}\)
\(=\frac{4}{9}.\frac{3^5}{5^5}=\frac{108}{3125}\)
Vậy \(A\le\frac{108}{3125}\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}y=\frac{3}{2}-\frac{3}{2}y\\x+y=1\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{3}{5}\end{cases}}\)