\(K=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{2.\frac{\left(x+y\right)^2}{4}}\)
\(=\frac{4}{1}+\frac{1}{2.\frac{1}{4}}=6\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Ta có \(\hept{\begin{cases}\left(x+y\right)^2=1\\\left(x-y\right)^2\ge0\end{cases}}\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
\(xy\le\frac{\left(x^2+^2\right)}{2}\)nên \(K=\frac{1}{x^2+y^2}+\frac{2}{xy}\ge\frac{1}{x^2+y^2}+\frac{2}{x^2+y^2}=\frac{3}{x^2+y^2}\ge\frac{3}{\frac{1}{2}}=6\)
\(K_{min}=6\)dấu "=" khi \(x=y=\frac{1}{2}\)