\(P=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)
\(\ge\frac{\left(x+y+x+y\right)^2}{x^2+y^2+2xy}+\frac{4xy}{2xy}=\frac{4\left(x+y\right)^2}{\left(x+y\right)^2}+2=6\)
"=" xảy ra <=> x = y.
\(\)