\(x=2-\sqrt{3}\)
suy ra
\(x^2-4x=7-4\sqrt{3}-8+4\sqrt{3}=-1\)
bây giờ thì dễ rồi
thay vào nhé
\(A=6\left(-1\right)^{2017}+8\left(-1\right)^{2017}+2016=2002\)
\(x=2-\sqrt{3}\)
suy ra
\(x^2-4x=7-4\sqrt{3}-8+4\sqrt{3}=-1\)
bây giờ thì dễ rồi
thay vào nhé
\(A=6\left(-1\right)^{2017}+8\left(-1\right)^{2017}+2016=2002\)
1, cho a = \(4+\sqrt{5}\),b=\(4-\sqrt{5}\)
Tính A=\(\left(a^{2018}-8a^{2017}+11a^{2016}\right)+\left(b^{2018}-8b^{2017}+11b^{2016}\right)\)
2, cho \(\sqrt{x^2-6x+36}+\sqrt{x^2-6x+48}=18\)
Tính A=\(\sqrt{4x^2-24x+256}-2\sqrt{x^2-6x+36}\)
Cho biểu thức A = (4x5 + 4x4 - 5x3 + 5x - 2)2016 + 2017
Tính giá trị của A khi x = \(\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\)
cho biểu thức \(A=\left(4x^5+4x^4-5x^3+5x-2\right)^{2016}+2017\) Tính giá trị của biểu thức A khi x=\(\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\)
giải chi tiết nha , cảm ơn!
Tính:
a. \(\sqrt{6+\sqrt{8}+\sqrt{12}+\sqrt{24}}\)
b. \(\sqrt{1+2016^2+\frac{2016^2}{2017^2}}+\frac{2016}{2017}\)
Cho x = \(\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\). Tính giá trị biểu thức:
\(A=\left(4x^5+4x^4-x^3+1\right)^{2018}+\left(\sqrt{4x^5+4x^4-5x^3+3}\right)^3+\left(\frac{1-2\sqrt{x}}{\sqrt{2x^2}+2x}\right)^{2017}\) tại giá trị x đã cho
Cho \(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\).
Tính giá trị phương trình: \(A=\left(4x^5+4x^4-x^3+1\right)^{2018}+\left(\sqrt{4x^5+4x^4-5x^3+3}\right)^3+\left(\frac{1-\sqrt{2}x}{\sqrt{2x^2+2x}}\right)^{2017}\)
tại giá trị của x.
a) Cho x,y thỏa mãn đẳng thức \(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2016\).Tính x+y
b) Cho x,y thỏa mãn đẳng thức\(\left(\sqrt{x^2+2017}-x\right)\left(\sqrt{y^2+2017}-y\right)=2017\).Tính x+y
Giải pt
1)x+y+z+8=\(2\sqrt{x-1}\)+\(4\sqrt{y-2}\)+\(6\sqrt{z-3}\)
2)\(\sqrt{x}+\sqrt{x+1}=1\)
3)\(\left(1+\sqrt{x^2+2017+2016}\right)\)\(\left(\sqrt{2016+x}-\sqrt{x+1}\right)\)=2015
cho x \(x=\left(\sqrt{3}+1\right)\) \(\sqrt[3]{6\sqrt{3}-10}\)-\(-\sqrt{7+4\sqrt{3}}\)
Tính A=\(\frac{x^4-4x^3+3}{x^{2017}}\)