Cho x,y >0 và \(x+\frac{1}{y}\le1\) Tìm GTNN của Q=\(\frac{x}{y}+\frac{y}{x}\)
Cho x,y là các số dương thỏa mãn \(x+\frac{1}{y}\le1\) . Tìm GTNN của \(P=\frac{x}{2y}+\frac{y}{x}\)
cho x,y,z>0 thỏa mãn x+y+z=2018
tìm GTNN của \(P=\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\)
Cho x>0 y>0 và \(x+y\le1\) tìm GTNN của bt
\(Q=x^2+y^2+\frac{1}{x^2}+\frac{1}{\cdot y^2}\)
Cho x, y >0 thỏa mãn \(x^2+y^2\le1\). Tìm GTNN của \(A=\frac{1}{x^2+y^2}+\frac{2}{xy}\)
CHo \(x+y+z\le1\)Tính GTNN\(C=\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\)
Cho x, y là các số dương thỏa mãn \(x+\frac{1}{y}\le1\). Tìm GTNN của biểu thức P= \(\frac{x}{2y}+\frac{y}{x}\)
Cho x, y > 0 và thỏa mãn điều kiện \(x+y\le1\)
Tìm GTNN của K = \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
CHo x, y > 0 thỏa mãn \(\frac{2017}{x}+\frac{2018}{y}=1\).
Tìm GTNN của biểu thức A = x + y