Cho x5+y5=2x2y2 . CMR 1-xy là bình phương của một số hữu tỉ
Giúp tôi bài này với :
Cho các số hữu tỉ thỏa mãn x5+y5=2x2y2. CMR \(\sqrt{1-xy}\)là số hữu tỉ
CMR A = \(\sqrt{1+\frac{1}{xy}}\)thuộc số hữu tỉ biết x; y đều là số hữu tỉ và \(^{x^3+y^3=2x^2y^2}\)
cho x;y là các số hữu tỉ dương thỏa mãn \(^{x^3+y^3=2x^2y^2}\)
cmr: \(\sqrt{1-\frac{1}{xy}}\)là số hữu tỉ
mk làm đc rùi nhưng mờ chưa hay lứm ai có cách khác giúp mk nha!
Cho x, y thỏa mãn phương trình: `2x^2+ x = 3y^2` + 1 CMR: x - y và 2x + 2y+ 1 là số chính phương
Giải hệ phương trình 2 x 2 − y 2 + x y − 5 x + y + 2 = y − 2 x + 1 − 3 − 3 x x 2 − y − 1 = 4 x + y + 5 − x + 2 y − 2
cho các số thực dương x,y thỏa 2x+3y=5. Cmr
\(\sqrt{xy+2x+2y+4}\) + \(\sqrt{\left(2x+2\right)y}\)<= 5
Cho x,y thuộc Q x khác 0 y khác 0 thỏa mãn x2+y2=2x2y2
CMR: 1 - 1/xy là số chính phương
Toán 9 mình đang cần gấp
Cho A=\(\sqrt{1+\frac{1}{xy}}\) biết x và y đều là số hữu tỷ và \(^{x^3+y^3=2x^2y^2}\) chứng minh rằng A cũng là số hữu tỷ