dễ mà
=>x >=1-3y.thay vào bt A= x^2+y^2 >= (1-3y)^2+y^2
đến đây bạn tự giải tiếp nha
\(\left(x+3y\right)^2\ge1\Leftrightarrow\left(1+9\right)\left(x^2+y^2\right)\ge1\Leftrightarrow x^2+y^2\ge\frac{1}{10}\)
dễ mà
=>x >=1-3y.thay vào bt A= x^2+y^2 >= (1-3y)^2+y^2
đến đây bạn tự giải tiếp nha
\(\left(x+3y\right)^2\ge1\Leftrightarrow\left(1+9\right)\left(x^2+y^2\right)\ge1\Leftrightarrow x^2+y^2\ge\frac{1}{10}\)
Cho \(x+3y\ge1\)Tìm giá trị nhỏ nhất của biểu thức \(x^2+y^2\)
Cho \(x+3y\ge1\). Giá trị nhỏ nhất của biểu thức\(A=x^2+y^2\) là:
Cho x, y là các số thực thỏa mãn \(x\ge1,x+y< 4\)
Tìm giá trị nhỏ nhất của biểu thức \(A=x^2+3xy+4y^2\)
Cho x, y là các số thực thỏa mãn \(x\ge1,x+y< 4\)
Tìm giá trị nhỏ nhất của biểu thức \(A=x^2+3xy+4y^2\)
Cho x+3y>=1 . Giá trị nhỏ nhất của biểu thức là A=x^2+y^2
Bài 1:
Cho số thực x. Với \(x\ge1\).Tìm giá trị nhỏ nhất của biểu thức
\(A=\sqrt{x-2\sqrt{x-1}}+5.\sqrt{x+3-4.\sqrt{x-1}}+\sqrt{x+8-6.\sqrt{x-1}}\)
Bài 2:
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức:
\(y=\frac{x^2}{x^2-5x+7}\)
Bài 3:
Cho hai số dương x,y thay đổi nhưng luôn thỏa mãn điều kiện \(\frac{2}{x}+\frac{3}{y}=6\)
Tìm giá trị nhỏ nhất của x+y
Cho x, y thay đổi thỏa mãn x+y=1
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức:
\(B=\left(4x^2+3y\right)\left(4y^2+3x\right)+25xy\)
Cho \(x+3y\ge1\)Giá trị nhỏ nhất của \(A=x^2+y^2\)
Cho các số thực không âm x, y thay đổi và thỏa mãn x + y = 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức S = (4x2 + 3y)(4y2 + 3x) + 25xy.