Bài 1 ( Đề thi vào lớp 10 Trường PTNK ĐHQG TP.HCM năm học 2002 - 2003)
Cho x, y, z là các số nguyên thỏa mãn phương trình:
x2+y2=z2
a, Chứng minh rằng trong hai số x, y có ít nhất một số chia hết cho 3.
b, Chứng minh rằng tích xyz chia hết cho 12.
cho x,y,z là 3 số nguyên thỏa man: x2+y2=z2
Chứng minh A=xy chia hết cho 12
cho x,y,z,>0 và xyz=1 CM : x/(x2+2) +y/(y2+2)+z/(z2+2) <=1
x^2+y^2=z^2 , x,y,z thuộc tập Z
CMR; xyz chia hết cho 60
Cho các số x, y, z dương. Chứng minh rằng x2/y2 + y2/z2 + z2/x2 ≥ x/y + y/z + z/x
Cho các số x, y, z dương. Chứng minh rằng x2/y2 + y2/z2 + z2/x2 ≥ x/y + y/z + z/x
Cho các số x, y, z dương. Chứng minh rằng x2/y2 + y2/z2 + z2/x2 ≥ x/y + y/z + z/x
Cho x,y,z là 3 số thực dương thỏa mãn x+y+z=1. Xác định giá trị nhỏ nhất của biểu thức?
P=\(\frac{1}{\left(x2+y2+z2\right)}+\frac{1}{xyz}\)