a) tính giá trị của biểu thức: x^2+2y tại x=2, y= –3 b) tính giá trị của biểu thức: x^2+2xy+y^2 tại x=4, y=6 c) tính giá trị của biểu thức: P= x^2-4xy+4y^2 tại x=1 và y= 1/2
1. Phân tích đa tức thành nhân tử: (x-2)(x-4)(x-6)(x-9)+15
2. Tính giá trị biểu thức sau, biết x^3 -x=6. A=x^6 -2x^4 +x^3 +x^2 -x
3.Cho x, y là 2 số khác nhau thỏa manc: x^2 +y=y^2 +x. Tính giá trị biểu thức sau A= (x^2 +y^2 +xy) : (xy-1)
1. Tính Giá trị nhỏ nhất của biểu thứ (x+1)(x+2)(x+3)(x+6)+2010
2. Phân tích đa thức thành nhân tử (x-2)(x-4)(x-6)(x-8) +15
3. Tính giá trị biểu thức sau: x^2 +y= y^2 +x. tính giá trị của biểu thức sau A= (x^2 +y^2 +xy) : (xy-1)
Cho x*y=3, x*z=4, y*z=6. Tính giá trị của biểu thức A=. 1/2*( x^2+y^2+z^2)
Cho x2-y2=1. Tính giá trị biểu thức A= 2(x6-y6) - 3(x4-y4).
Bài 1:
a) Cho a + b + c = 9, a2 + b2 + c2 = 141. Tính giá trị biểu thức M = ab + bc + ca
b) Cho x + y = 1. Tính giá trị của biểu thức B = x3 + 3xy + y3
c) Cho x + y = a; x2 + y2 = b, x3 + y3 = c. Tính giá trị của biểu thức N = a3 - 3ab + 2c
d) Cho x + y = a, x - y = b. Tính giá trị của biểu thức D = x3 - y3 theo a và b
e) Cho x + y = a, x2 + y2 = b. Tính giá trị của biểu thức E = x3 + y3 theo a và b
f) Cho x + y = 1, xy= -1. Tính giá trị của các biểu thức x2 + y2 , x3 + y3 , (x2 - y2)2 , x6 + y6
g) Cho x - y = 2, xy = 1. Tính giá trị của các biểu thức x2 + y2, x3 - y3, (x2- y2)2, x6 - y6
h) Cho a + b + c = 0, a2+ b2 + c2 = 1. Tính giá trị của biểu thức H = a4 + b4 + c4
i) Cho a + b = a3 + b3 =1. Chứng minh: a2 + b2 = a4+ b4
j) Cho x + y = a + b; x2 + y2 = a2 + b2. CMR: x2000+ y2000 = a2000+ b2000
k) Cho a2 + b2 = 1; c2 + d2 = 1; ac + bd = 0. CMR: ab + cd = 0
Cho x,y là 2 số thỏa mãn x^2 - y^2 =2. Vậy giá trị của biểu thức A=2(x^6 - y^6)- 6(x^4+y^4) là A=...
Cho x2 - y2 = 1. Tính giá trị biểu thức A = 2 ( x6 - y6 ) - 3 ( x4 + y4 ).
Cho x2+y2=1
CMR giá trị biểu thức 2(x6+y6)-3(x4+y4) ko phụ thuộc vào giá trị của x,y