1.bạn biến đổi ở mẫu rồi tham khảo bài này Xem câu hỏi
mà hình như ko cần biến đổi đâu 2 bài giống hệ nhau
1.bạn biến đổi ở mẫu rồi tham khảo bài này Xem câu hỏi
mà hình như ko cần biến đổi đâu 2 bài giống hệ nhau
cho x;y dương . TM xy(x+y)=x^2+y^2- xy . tìm A max=\(\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)
Cho x,y>0 tm xy+x+y=1. Tính
\(S=x\sqrt{\frac{2\left(1+y^2\right)}{1+x^2}}+y\sqrt{\frac{2\left(1+x^2\right)}{1+y^2}}+\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{2}}\)
Cho x,y>0, \(xy+x+y=1\)
Tính \(S=\sqrt{\frac{2\left(1+y^2\right)}{1+x^2}}+\sqrt{\frac{2\left(1+x^2\right)}{1+y^2}}+\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{2}}\)
cho x,y,z>0 và xy+yz+xz=1
tính Q=\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}}\)
Cho x,y >0 và \(^{\left(x+y-1\right)^2}\)= xy .
Tìm GTNN của P = \(\frac{1}{x^2+y^2}+\frac{1}{xy}+\frac{\sqrt{xy}}{x+y}\)
Cho các số dương x, y, z thỏa mãn:\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Tìm giá trị lớn nhất của
\(Q=\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{xz\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Cho các số dương x,y,z thỏa mãn: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Tìm giá trị lớn nhất biểu thức \(Q=\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{zx\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Cho x;y;z>0;\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) . CMR:\(\frac{\sqrt{x^2+2y^2}}{xy}+\frac{\sqrt{y^2+2z^2}}{yz}+\frac{\sqrt{z^2+2x^2}}{zx}\ge\sqrt{3}\)
1) Cho x,y,z dương thỏa mãn xy+yz+xz=1. tìm GTLN của:
P=\(\frac{x}{\sqrt{1+x^2}}\)+\(\frac{y}{\sqrt{1+y^2}}\)+\(\frac{z}{\sqrt{1+z^2}}\)
Chứng minh : a = xy + \(\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\) , b=\(x\sqrt{1+y^2}+y\sqrt{1+x^2}\)
Tính b theo a nếu x,y>0