Tính giá trị của biểu thức T=\(\frac{1+x_1}{1-x_1}+\frac{1+x_2}{1-x_2}+\frac{1+x_3}{1-x_3}\)
Với x1,x2,x3 là ba nghiệm củ a phương trình x3 - x - 1 = 0
Cho \(x_1;x_2;x_3\) là 3 nghiệm của đa thức \(f\left(x\right)=x^3-3x+1\)
Tính \(A=\frac{1+2x_1}{1+x_1}+\frac{1+2x_2}{1+x_2}+\frac{1+2x_3}{1+x_3}\)
CMR: nếu \(x_1=\frac{1}{x_2}=x_2+\frac{1}{x_3}=x_3+\frac{1}{x_4}=.....=x_n+\frac{1}{x_1}\)
thì \(x_1=x_2=x_3=...=x_n\)
hoặc \(\left|x_1.x_2.x_3......x_n\right|=1\)
Ai nhanh mk tik
x1, x2, x3 là nghiệm phương trình x3-x-1=0. Tính giá trị biểu thức T= \(\frac{1+x1}{1-x1}\)\(+\frac{1+x2}{1-x2}\)\(+\frac{1+x3}{1-x3}\)
Mấy bạn giúp mik với
Tìm các giá trị của \(x_1;x_2;...;x_{2008}\)sao cho:
\(\hept{\begin{cases}x_1+x_2+x_3+...+x_{2008}=2008\\x_{1^3+x_2^3+x_3^3+...+x^3_{2008}=x_1^4+x_2^4+x_3^4+...+x^4_{2008}}\end{cases}}\)
Giảu hệ phương trình (2000 ẩn số):
\(2x_1=x_2+\frac{1}{x_2}\left(1\right)\)
\(2x_2=x_3+\frac{1}{x_3}\left(2\right)\)
..................................
\(2x_{1999}=\frac{1}{x_{2000}}+x_{2000}\left(1999\right)\)
\(2x_{2000}=x_1+\frac{1}{x_1}\left(2000\right)\)
cho 2011 số tự nhiên thõa mãn điều kiện
\(\frac{1}{x_1^{11}}+\frac{1}{x_2^{11}}+\frac{1}{x_3^{11}}+...+\frac{1}{x_{2011}^{11}}=\frac{2011}{2048}\)
tính tổng \(M=\frac{1}{x_1^1}+\frac{1}{x_2^2}+\frac{1}{x_3^3}+...+\frac{1}{x_{2011}^{2011}}\)
Cho 2 đa thức \(P\left(x\right)=x^5-5x^3+4x+1,Q\left(x\right)=2x^2+x-1\).Gọi \(x_1,x_2,x_3,x_4,x_5\)là các nghiệm của P(x).Tính giá trị của \(Q\left(x_1\right).Q\left(x_2\right).Q\left(x_3\right).Q\left(x_4\right).Q\left(x_5\right)\)
Giả sử \(\left|y\right|\ne1\) và \(y\ne0\), biết rằng \(x_1=\frac{y-1}{y+1};x_2=\frac{x_1-1}{x_1+1};x_3=\frac{x_2-1}{x_2+1};...\)Tìm y nếu \(x_{1986}=3\)