\(\frac{x^3+y^3-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\ge8\)
\(\Leftrightarrow\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\ge8\)
\(\Leftrightarrow\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge8\)
By Titu's Lemma we have:
\(LHS\ge\frac{\left(x+y\right)^2}{x+y-2}\) and we need prove that:
\(\left(x+y\right)^2\ge8\left(x+y\right)-16\)
But the last inequalities is true. ( QED )