A = \(\frac{3x^4+16}{x^3}=x+x+X+\frac{16}{x^3}\)
\(\ge4\sqrt[4]{x^3×\frac{16}{x^3}}=8\)
Vậy GTNN là A = 8 khi x = 2
A = \(\frac{3x^4+16}{x^3}=x+x+X+\frac{16}{x^3}\)
\(\ge4\sqrt[4]{x^3×\frac{16}{x^3}}=8\)
Vậy GTNN là A = 8 khi x = 2
Cho x > 0. Tìm GTNN của biểu thức \(A=\frac{3x^4+16}{x^3}\).
tìm GTNN của a, \(y=\frac{3x^4+16}{x^3}\) ; b, \(y=\frac{9x}{2-x}+\frac{2}{x}\) (0<x<2) ; c, \(y=\frac{x^3+2000}{x}\) (x>0)
tìm gtnn của \(A=x^2-3x+\frac{4}{x}+2016\)
cho x>0
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
cho x>0. Tìm GTNN của biểu thức A=x2+3x+\(\frac{1}{4}\)
cho x>0,y>0,z>0 và x+y+z=6. tìm GTNN của P= \(\frac{4}{x}+\frac{9}{y}+\frac{16}{z}\)