Áp dụng bất đẳng thức Bunhiacopxki:
\(P^2\le\left(1^2+1^2+1^2\right)\left(2x+2y+2z+xy+yz+xz\right)=3\left(4+xy+yz+xz\right)\)
Mặt khác ta có : \(xy+yz+xz\le x^2+y^2+z^2\le\frac{\left(x+y+z\right)^2}{3}=\frac{4}{3}\) (Dấu "=" xảy ra khi x=y=z=2/3)
=> \(P\le\sqrt{3\left(4+\frac{4}{3}\right)}=4\)khi x=y=z=2/3
Vậy Max P = 4 <=> x=y=z=2/3
hjhhogf hgghi huiio