Ta có : \(5x^2+8xy+5y^2+4x-4y+8=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2+4x+4\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(2x+2y\right)^2+\left(x+2\right)^2+\left(y-2\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(2x+2y\right)^2=0\\\left(x+2\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=-y\\x=-2\\y=2\end{cases}}\) ( thỏa mãn )
Khi đó \(P=\left(-2+2\right)^{22}.\left(-2+1\right)^{12}+\left(2-1\right)^{2019}\)
\(=0+1=1\)
Vậy : \(P=1\) với x,y thỏa mãn đề.
ta được (4x^2+8xy+4y^2)+(x^2+4x+4)+(Y^2-4y+4)=0
(2x+2y)^2+(x+2)^2+(y-2)^2=0
(=)x=-2 và y=2
P=0-1+1=0
Ai có thể cho mình lí do vì sao mình sai không ?? Sao mọi k sai cho mình vậy ??