1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
Cho x,y,z là các số dương và \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\); \(B=\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{x+z}\)
Chứng minh: A=B
Cho x, y, z > 0; a, b, c thuộc R. Chứng minh a^2/x + b^2/y + c^2/z ≥ (b + b + c)^2 / (x + y + z)
Chứng minh rằng x^2/y^2 +y^2/z^2 +z^2/x^2 >= x/y +y/z +z/x với các số dương x;y;z
Bài 1: a;b;c > 0 và abc = 1
Chứng minh : \(\dfrac{a}{b^4+c^4+a}+\dfrac{b}{a^4+c^4+b}+\dfrac{c}{a^4+b^4+c}\le1\)
Bài 2: x;y;z > 0 và x + y + z = 2
Chứng minh : \(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
Cho x,y,z thỏa mãn x^3-y^2-y=y^3-z^2-z=z^3-x^2-x=1/3
Chứng minh rằng x,y,z dương và x=y=z
Cho x,y,z là các số dương và A=\(\frac{x^2}{x+y}\)+\(\frac{y^2}{y+z}\)+\(\frac{z^2}{z+x}\) và B= \(\frac{y^2}{x+y}\)+ \(\frac{z^2}{y+z}\)+\(\frac{x^2}{z+x}\) chứng minh A=B
Bài 1 : Cho x,y thuộc Z. Chứng minh:
a) A= ( x-y ) + | x + y | chia hết cho 2
b) B= ( x-y ) - | x - y | chia hết cho 2
c*) C= ( x-y-z ) + || x+y | +z | chia hết cho 2
Cho x^2-y=a ; y^2-z=b ;z^2-x=c
(a,b,c là các hằng số cho trước)
CMR :giá trị biểu thức sau không phụ thuộc vào x , y ,z
P=x^3(z-y^2) +y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)