cho 3 số thực dương x;y;z thỏa mãn x+y+z<=3/2. tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
Xét các số thực dương x; y; z thay đổi sao cho \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)=0\)
1, Chứng minh rằng \(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\ge1\)
2, Tìm giá trị lớn nhất của biểu thức \(P=x^2+y^2+z^2-\frac{xy}{x+y}-\frac{yz}{y+z}-\frac{zx}{z+x}\)
Cho x,y,z là các số dương thay đổi và luôn thỏa mãn điều kiện xyz=1. Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Cho x,y,z là những số thực dương thỏa mãn \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1.\)
Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{y^2z^2}{x\left(y^2+z^2\right)}+\frac{z^2x^2}{y\left(x^2+z^2\right)}+\frac{x^2y^2}{z\left(x^2+y^2\right)}\)
Cho x,y,z là các số thực dương thỏa mãn x+y+z+xyz=4. Tìm giá trị nhỏ nhất của biểu thức Q=\(\left(1+\frac{x}{y}+xz\right)\left(1+\frac{y}{z}+yz\right)\left(1+\frac{z}{x}+xz\right)\)
cho x, y, z là các số không âm thỏa mãn x+y+z=1
a) Chứng minh rằng \(xyz\ge\left(x+y-z\right)\left(y+z-x\right)\left(z+x-y\right)\)
b) Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+z^2+\frac{9}{2}xyz.\)
Cho các số thực x, y, z thỏa mãn các điều kiện: \(\hept{\begin{cases}x+y+z=0\\x^2+y^2+z^2=6\\xyz=-1\end{cases}}\)
Tính giá trị biểu thức \(P=\frac{1}{xy\left(1-z\right)-z}+\frac{1}{yz\left(1-x\right)-x}+\frac{1}{zx\left(1-y\right)-y}\)
Cho x,y,z là các số dương thỏa mãn xyz=1
Tìm giá trị nhỏ nhất của biểu thức \(E=\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)
Cho a,y,z > 0 thõa mãn xyz = 1. Tìm giá trị lớn của biểu thức A = \(\frac{1}{\left(3x+1\right)\left(y+z\right)+x}+\frac{1}{\left(3y+1\right)\left(x+z\right)+y}+\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\)