Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Lâm Tùng

Cho x, y, z là các số nguyên thoả mãn x + xy + y = 1 ; y + zy + z = 3; z + xz + x = 7. Tính giá trị
của biểu thức M = x + y^2 + z^3

Nguyễn Việt Lâm
21 tháng 8 2021 lúc 18:52

\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=2\\yz+y+z+1=4\\zx+z+x+1=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=4\\\left(z+1\right)\left(x+1\right)=8\end{matrix}\right.\) (1)

Nhân vế với vế

\(\Rightarrow\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=64\)

\(\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=\pm8\)

- Với \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\) (2) chia vế cho vế của 2 với từng pt của (1) ta được:

\(\left\{{}\begin{matrix}z+1=4\\x+1=2\\y+1=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\\z=3\end{matrix}\right.\)

- Với \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\) (2) chia vế cho vế của (2) cho từng pt của (1)

\(\Rightarrow\left\{{}\begin{matrix}z+1=-4\\x+1=-2\\y+1=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=-2\\z=-5\end{matrix}\right.\)

Nguyễn Lâm Tùng
21 tháng 8 2021 lúc 17:55

ai giúp mk với


Các câu hỏi tương tự
Tiến Nguyễn Minh
Xem chi tiết
Tiểu Lí
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Lê Kiều Uyên
Xem chi tiết
Lý Thanh Thảo
Xem chi tiết
chipi
Xem chi tiết
Hoàng Nhật anh
Xem chi tiết