1. Cho x,y,z là ba số dương thay đổi và thỏa mãn \(^{x^2+y^2+z^2\le xyz}\)
Hãy tìm giá trị lớn nhất của biểu thức \(A=\frac{x}{x^2+yz}+\frac{y}{y^2+zx}+\frac{z}{z^2+xy}\)
2. Cho x,y,z là các số thực không âm thỏa mãn \(x^2+y^2+z^2=3\)
Tìm giá trị lớn nhất của biểu thức \(B=xy+yz+zx+\frac{5}{x+y+z}\)
Cho x, y, z là các số thực thỏa mãn điều kiện \(\frac{3x^2}{2}+y^2+z^2+yz=1\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức B = x + y + z
cho ba số thực không âm x,y,z thỏa mãn xyz=1 . tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M=\(\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\)
Cho x , y ,z là các số thực thỏa mãn điều kiện : \(\frac{3}{2}x^2+y^2+z^2+yz=1\) 1 . Tìm giá trị lớn nhất của biểu thức A = x + y + z là :
Cho x,y,z là 3 số dương thỏa mãn \(x^2+y^2+z^2\le6\) Tìm giá trị nhỏ nhất của biểu thức \(Q=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\)
Cho x,y,z là các số thực dương thay đổi thỏa mãn : x+y+z=9
Tìm gía trị nhỏ nhất của biểu thức \(M=\frac{x^3+y^3}{xy+9}+\frac{y^3+z^3}{yz+9}+\frac{x^3+z^3}{xz+9}\)
Cho x,y,z là 3 số thực dương thảo mãn điều kiện xy+yz+zx=xyz
Tìm giá trị lướn nhất của biểu thức:
P=\(\sqrt{\frac{1}{xy}:\left(\frac{1}{z}+\frac{1}{xy}\right)}+\sqrt{\frac{1}{yz}:\left(\frac{1}{x}+\frac{1}{yz}\right)}+\sqrt{\frac{1}{xz}:\left(\frac{1}{y}+\frac{1}{xz}\right)}\)
Cho x, y, z là các số thực dương thỏa mãn x+y-z+1=0. Tìm giá trị lớn nhất của biểu thức: P=\(\frac{x^3\cdot y^3}{\left(x+yz\right)\cdot\left(y+xz\right)\cdot\left(z+xy\right)^2}\)
Cho x,y,z là các số thực dương thỏa mãn x+y+z+xyz=4. Tìm giá trị nhỏ nhất của biểu thức Q=\(\left(1+\frac{x}{y}+xz\right)\left(1+\frac{y}{z}+yz\right)\left(1+\frac{z}{x}+xz\right)\)