Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
oOo Min min oOo

Cho x, y, z là các số dương thỏa mãn x +y + z =\(\sqrt{3}\). Tìm GTNN của : B= \(\frac{1}{\sqrt{x\left(y+2z\right)}}\)\(\frac{1}{\sqrt{y\left(z+2x\right)}}\)\(\frac{1}{\sqrt{z\left(x+2y\right)}}\)

 

Đen đủi mất cái nik
15 tháng 9 2018 lúc 20:26

TA CÓ:

\(B=\frac{1}{\sqrt{x\left(y+2z\right)}}+\frac{1}{\sqrt{y\left(z+2x\right)}}+\frac{1}{\sqrt{z\left(x+2y\right)}}\ge\frac{1}{\frac{x+y+2z}{2}}+\frac{1}{\frac{y+z+2x}{2}}+\frac{1}{\frac{z+x+2y}{2}}\)

\(\ge\frac{\left(1+1+1\right)^2}{\frac{3}{2}\left(x+y+z\right)}=\frac{18}{3\sqrt{3}}=\frac{6}{\sqrt{3}}\)

DẤU BẰNG XẢY RA:\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

Phạm Quốc Cường
15 tháng 9 2018 lúc 20:56

\(\frac{B}{\sqrt{3}}=\frac{1}{\sqrt{3x\left(y+2z\right)}}+\frac{1}{\sqrt{3y\left(z+2x\right)}}+\frac{1}{\sqrt{3z\left(x+2y\right)}}\) 

\(\ge\frac{1}{\frac{3x+y+2z}{2}}+\frac{1}{\frac{3y+z+2x}{2}}+\frac{1}{\frac{3z+x+2y}{2}}\ge\frac{2\left(1+1+1\right)^2}{6\left(x+y+z\right)}=\frac{18}{6\sqrt{3}}\) 

\(\Rightarrow B\ge\frac{18\sqrt{3}}{6\sqrt{3}}=3\) 

Dấu "=" khi \(x=y=z=\frac{1}{\sqrt{3}}\)


Các câu hỏi tương tự
Anh Tuan Le Xuan
Xem chi tiết
๖ۣۜLuyri Vũ๖ۣۜ
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Trương Thanh Nhân
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Trương Thanh Nhân
Xem chi tiết
Thắng Nguyễn
Xem chi tiết