Ta có:
\(x^2=yz\Rightarrow\frac{y}{x}=\frac{x}{z}=\frac{x^2+y^2}{x^2+z^2}=\frac{yz+y^2}{yz+z^2}=\frac{y\left(z+y\right)}{z\left(y+z\right)}=\frac{y}{z}\) với x;y;z khác 0 (đpcm)
k cho mik nha các bn!
Ta có:
\(x^2=yz\Rightarrow\frac{y}{x}=\frac{x}{z}=\frac{x^2+y^2}{x^2+z^2}=\frac{yz+y^2}{yz+z^2}=\frac{y\left(z+y\right)}{z\left(y+z\right)}=\frac{y}{z}\) với x;y;z khác 0 (đpcm)
k cho mik nha các bn!
Cho x,y,z,a,b,c khác 0 và \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\).Chứng minh rằng \(\frac{a^2-bc}{x}=\frac{b^2-ac}{y}=\frac{c^2-ab}{z}\)
Cho x,y và z là các số khác 0 và x^2=yz ; y^2=xz ; z^2=xy chứng minh rằng x=y=z
Cho x,y và z là các số khác 0 và x^2=yz ; y^2=xz ; z^2=xy chứng minh rằng x=y=z
Cho x,y,z là các số khác 0 và \(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\). Chứng minh rằng :
Hoặc x = y = z hoặc x2y2z2=1
Cho x,y,z là các số khác 0 và \(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\). Chứng minh rằng :
Hoặc x = y = z hoặc x2y2z2=1
Cho a, b, c, x, y, z khác 0 thỏa mãn: \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\)
Chứng minh rằng: \(\frac{a^2-bc}{x}=\frac{b^2-ac}{y}=\frac{c^2-ab}{z}\)
Cho x, y, z là các số khác 0 và \(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
Chứng minh rằng: Hoặc x = y = z hoặc x2y2z2 = 1
Chứng minh rằng nếu các số x, y, z khác 0 thỏa mãn \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\) thì x = y = z