Cho x,y,z khác 0 và\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}\)
Tính A=\(\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\)
Cho các số x, y, z khác 0. Biết rằng \(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{z}+\frac{1}{x}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\) và \(x^3+y^3+z^3=1\). Tính \(P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Cho x,y,z khác 0: x+y+z khác 0 và
\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}\)
Tìm \(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)=?\)
Cho x,y,z là 3 số khác 0 thỏa mãn điều kiện x3+y3+z3=3xyz và x+y+z=0.Tính giá trị của biểu thức:
\(M=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
Bài 1:Cho x,y,z là 3 số khác 0.thỏa mãn \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)\(1\)
TÍNH GT BT
\(A=\left(x^{25}+y^{25}\right)\left(y^3+z^3\right)\left(x^{2019}+z^{2019}\right)\)
Cho x,y,z là 3 số thực khác 0 thoả mãn đồng thời :x+y+z= a và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{a}\)
Tính giá trị biểu thức S= \(\left(x^5-a^5\right)\left(y^7-a^7\right)\left(x^9-a^9\right)\)
Cho x,y,z khác 0
\(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{z}+\frac{1}{x}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\)
x3+y3+z3=1
Tính A= \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
giải hộ mk bài này vs ạ
Cho x,y,z khác 0 và x+y+z=2008. tính giá trị biểu thức P= \(\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-y\right)\left(z-x\right)}\)
Cho ba số x,y,z khác 0 và x+y+z=0. Tính giá trị của E:
\(E=\left(\frac{x}{y}+1\right)\left(\frac{y}{z}+1\right)\left(\frac{y}{z}+1\right)\)