\(Đặt x / 2 = y / 5 = z / 7 = k \)
\(\Rightarrow\)\(x = 2k ; y = 5k ; z = 7k\)
\(A = ( 4x - y + z ) / ( x + 2y - z )\)
\(A = ( 4 . 2k - 5k + 7k ) / ( 2k + 2 . 5k - 7k ) \)
\(A = ( 8k - 5k + 7k ) / ( 2k + 10k - 7k )\)
\(A = 10 k / 5k\)
\(A = 2\)
\(Đặt x / 2 = y / 5 = z / 7 = k \)
\(\Rightarrow\)\(x = 2k ; y = 5k ; z = 7k\)
\(A = ( 4x - y + z ) / ( x + 2y - z )\)
\(A = ( 4 . 2k - 5k + 7k ) / ( 2k + 2 . 5k - 7k ) \)
\(A = ( 8k - 5k + 7k ) / ( 2k + 10k - 7k )\)
\(A = 10 k / 5k\)
\(A = 2\)
Cho ba số x , y , z khác 0 thỏa mãn $\frac{y+z-x}{x}$ = $\frac{z+x-y}{y}$ = $\frac{x+y-z}{z}$
Tính giá trị biểu thức P = ( 1+$\frac{x}{y}$ )( 1+$\frac{y}{z}$ )( 1+$\frac{z}{x}$ )
cho ba số thực x,y,z thỏa mãn điều kiện x+y+z =0 và xyz khác 0 .Tính giá trị biểu thức
P=\(\frac{x^2}{y^2+z^2-x^2}\)\(+\frac{y^2}{z^2+x^2-y^2}+\)\(\frac{z^2}{x^2+y^2-z^2}\)
giúp mình với ạ mình đang cần gấp
cảm ơn các bạn nhiều ạ
Cho x , y, , z là 3 số khác 0 và x+y+z khác 0 thỏa mãn: \(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\)
Tính giá trị biểu thức: A = \(\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)
Cho 4 số x;y;z;t khác 0 thỏa mãn điều kiện ;
\(\frac{y+z+t-nx}{x}=\frac{z+t+x-ny}{y}=\frac{t+x+y-nz}{z}=\frac{x+y+z-nt}{t}\)
và x+y+z+t=2012 . Tính giá trị của biểu thức P=x+2y-3z+t
Cho x,y,z khác 0 thỏa mãn \(\frac{x+y-2014z}{z}=\frac{y+z-2014x}{x}=\frac{x+z-2014y}{y}\).Tính giá trị của biểu thức A=\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
ba số x,y,z,t khác 0 thỏa mãn điều kiện :
\(\frac{y+z+t-nx}{x}=\frac{z+t+x-ny}{y}=\frac{t+x+y-nz}{z}=\frac{x+y+z-nt}{t}\) (n là số thự nhiên )
và a + y + z + t = 2012. Tính giá trị của biểu thức : P = x + 2y - 3z + t.
Cho 3 số x,y,z khác 0 thỏa mãn điều kiện:
\(\frac{y+z+t-nx}{x}=\frac{z+t+x-ny}{y}=\frac{t+x+y-nz}{z}=\frac{x+y+z-nt}{t}\)(n là số tự nhiên)
và x+y+z+t=2012. Tính giá trị biểu thức P=x+2y-3z+t.
cho các số x,y,z khác 0 thỏa mãn x+y+z=2020 và \(\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}\) tính giá trị biểu thức \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Cho 3 chữ số x; y; z khác 0 và x + y z khác 0 thỏa mãn điều kiện :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Tính giá trị biểu thức :
\(B=\left(1+\frac{x}{y}\right).\left(1+\frac{y}{2}\right).\left(1+\frac{z}{x}\right)\)