đề bài có sai k bạn ,
giả sử x và y đối nhau , thì từ (1) => z=2018 ; từ (2) => z=1/2018 ....?
đề bài có sai k bạn ,
giả sử x và y đối nhau , thì từ (1) => z=2018 ; từ (2) => z=1/2018 ....?
cho :
x+y+z= 2018
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2018\)
Chứng minh x, y, z đôi một đối nhau ?
Cho \(x,y,z\ne0\)và đôi một khác nhau thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\). Chứng minh rằng
\(\left(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\right)\left(x^{2016}+y^{2017}+z^{2018}\right)=xy+yz+zx\)
Cho x, y, z thỏa mãn:
\(\frac{x}{2017}+\frac{y}{2018}+\frac{z}{2019}=1\)
\(\frac{2017}{x}+\frac{2018}{y}+\frac{2019}{z}=0\)
CMR:\(\frac{x^2}{2017^2}+\frac{y^2}{2018^2}+\frac{z^2}{2019^2}=1\)
Cho x, y , z > 0 thỏa mãn xyz = 1
Tìm GTLN của biểu thức : M = \(\frac{2018}{x^3+y^3+1}+\frac{2018}{y^3+z^3+1}+\)\(\frac{2018}{z^3+x^3+1}\)
Cho x , y , z thỏa mãn : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\) và \(\frac{2}{xy}-\frac{1}{z^2}=4\) Tính D = \(\left(x+2y+z\right)^{2018}\)
1 . Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)=4
CMR : A=\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{4}{x+y+2z}\)không lớn hơn 1
2 . Cho a , b , c thoả mãn a+b+c=2018 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)= \(\frac{1}{2018}\)
Tính giá trị của M=\(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}\)
Cho các số x, y, z khác 0 thỏa mãn:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)và \(\frac{2}{xy}-\frac{1}{z^2}=4\)
Tính giá teij của biểu thức \(P=\left(x+2y+z\right)^{2018}\)
Cho ba số x,y,z khác nhau và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) Chứng minh rằng trong ba số x,y,z có ít nhất một cặp số đối nhau
Cho x,y,z khác 0 thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\) và \(\frac{2}{xy}-\frac{1}{z^2}=4\)
Tính D = \(\left(x+2y+z\right)^{2018}\)