\(P=\frac{x}{2y+z}+\frac{y}{2z+x}+\frac{z}{2x+y}\)
Áp dụng bđt Cauchy-Schwarz ta có
\(P=\frac{x^2}{2xy+zx}+\frac{y^2}{2yz+xy}+\frac{z^2}{2z+yz}\ge\frac{\left(x+y+z\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Dấu "=" xảy ra khi x=y=z=1