Nguyen Duy Dai

Cho  x y z > 0 . Tìm GTNN của \(P=\frac{x^2}{y^2+yz+z^2}+\frac{y^2}{z^2+zx+x^2}+\frac{z^2}{x^2+xy+y^2}\)

FL.Hermit
21 tháng 8 2020 lúc 10:55

\(P=\frac{x^4}{x^2y^2+x^2yz+z^2x^2}+\frac{y^4}{y^2z^2+xzy^2+x^2y^2}+\frac{z^4}{z^2x^2+xyz^2+y^2z^2}\)

ÁP DỤNG BĐT CAUCHY -  SCHWARZ TA ĐƯỢC:

=>   \(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2y^2+y^2z^2+z^2x^2\right)+xyz\left(x+y+z\right)}\)           (1)

TA SẼ CHỨNG MINH:    \(\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2y^2+y^2z^2+z^2x^2\right)+xyz\left(x+y+z\right)}\ge1\)         (2)

<=>   \(x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge2\left(x^2y^2+y^2z^2+z^2x^2\right)+xyz\left(x+y+z\right)\)

<=>   \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)        (*)

TA ÁP DỤNG LIÊN TỤC 2 LẦN DẠNG BĐT SAU:     \(\alpha^2+\beta^2+\gamma^2\ge\alpha\beta+\beta\gamma+\alpha\gamma\)

KHI ĐÓ TA SẼ ĐƯỢC:    \(\Rightarrow x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)

VẬY BĐT (*) LÀ LUÔN ĐÚNG.

=> TỪ (1) VÀ (2)    =>    \(P\ge1\)

DẤU "=" XẢY RA <=>    \(x=y=z\)

VẬY P MIN = 1 <=>    x = y = z .

Khách vãng lai đã xóa

Các câu hỏi tương tự
nguyễn thị ánh nguyệt
Xem chi tiết
lý canh hy
Xem chi tiết
lý canh hy
Xem chi tiết
nguyen kim chi
Xem chi tiết
nguyen kim chi
Xem chi tiết
Lê Thị Hải Anh
Xem chi tiết
Nguyễn Anh Khôi
Xem chi tiết
Hồ Quốc Khánh
Xem chi tiết
Trai Họ Nguyễn
Xem chi tiết