CÁCH 1 :\(x+2y=3\Rightarrow x=3-2y\)
Ta có \(E=x^2+y^2=\left(3-2y\right)^2+y^2\)
\(=9-12y+4y^2+y^2\)
\(=5y^2-12y+9\)
\(=5\left(y^2-2.\frac{6}{5}.y+\frac{36}{25}\right)+\frac{9}{5}\)
\(=5.\left(y-\frac{6}{5}\right)^2+\frac{9}{5}\)
Vì \(5.\left(y-\frac{6}{5}\right)^2\ge0\forall y\) nên \(5\left(y-\frac{6}{5}\right)^2+\frac{9}{5}\ge\frac{9}{5}\)
Dấu bằng xảy ra khi và chỉ khi \(\left(y-\frac{6}{5}\right)^2=0\Leftrightarrow y=\frac{6}{5}\)
và \(x=3-2y=3-\frac{12}{5}=\frac{3}{5}\)
Vậy giá trị nhỏ nhất của E là \(\frac{9}{5}\)\(\Leftrightarrow x=\frac{3}{5}\)và\(y=\frac{6}{5}\)
Áp dụng BDT Bunhacopxki ta có
\(\left(x+2y\right)^2\le\left(x^2+y^2\right)\left(1^2+2^2\right)\)
\(\Leftrightarrow\)\(3^2\) \(\le5\left(x^2+y^2\right)\)
\(\Leftrightarrow\) \(x^2+y^2\ge\frac{9}{5}\)
Bạn tự chỉ ra dấu bằng như ở cách 1 nha