Cho x, y là các số thực khác 0 thỏa mãn: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A= 2016+ xy
Cho các số thực dương \(x,y,z\)thỏa mãn điều kiện \(x+y+z=1\) .Tìm giá trị nhỏ nhất của biểu thức:
\(F=\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Bài 1: Cho biểu thức:
\(P=\left(\frac{x+1}{x-2}-\frac{2x}{x+2}+\frac{5x+2}{4-x^2}\right):\frac{3x-x^2}{x^2+4x+4}\)
a, Rút gọn biểu thức P
b, tìm x để |P|= 2
c, Tìm giá trị nguyên của x để P nhận giá trị là số nguyên
Bài 2:
a, Phân tích đa thức sau thành nhân tử:
\(\left(x+2\right)\left(2x^2-5x\right)-x^3-8\)
b, Cho x, y, z là các số nguyên khác 0 đôi một khác nhau thỏa mãn:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Tính giá trị của biểu thức:
\(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
Bài 3:Tìm tất cả các cặp số nguyên (x;y) thỏa mãn:
\(y\left(x-1\right)=x^2+2\)
cho các số thực dương x, y thỏa mãn x+xy+y =8 tìm giá trị nhỏ nhất của biểu thức \(x^3+y^3+x^2+y^2+5\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\)
Cho biểu thức:
\(P=\frac{\left(x^2+y\right)\left(y+\frac{1}{4}\right)+\frac{3}{4}\left(y+\frac{1}{3}\right)+x^2y^2}{\left(x^2-y\right)\left(1-y\right)+x^2y^2+1}\)
a) Rút gọn P
b) Tính giá trị của biểu thức P với các số nguyên dương x;y thỏa mãn: 1! + 2! +...+ x! = y2
cho 2 số x, y là 2 số thực thỏa mãn x2+y2=4. tìm giá trị lớn nhất của biểu thức M=\(\frac{xy}{x+y+4}\)
Cho x,y là hai số thực khác 0 thỏa mãn \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=3\). Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(B=2020+xy\)
1, Cho x,y>0.Cmr :\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
2, Tìm giá trị nhỏ nhất của biểu thức :B=\(xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+2045\)
Cho các số dương x,y,z thỏa mãn: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Tìm giá trị lớn nhất biểu thức \(Q=\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{zx\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)