Theo đề ta có \(\left(x+\frac{1}{y}\right)\in Z\) và \(\left(y+\frac{1}{x}\right)\in Z\)\(\Rightarrow\)\(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)\in Z\)
hay \(\left(xy+\frac{1}{xy}+2\right)\in Z\)\(\Rightarrow\)\(\left(xy+\frac{1}{xy}\right)\in Z\)
Suy ra \(\left(xy+\frac{1}{xy}\right)^2\in Z\)\(\Rightarrow\)\(\left(x^2y^2+\frac{1}{x^2y^2}+2\right)\in Z\)\(\Rightarrow\)\(\left(x^2y^2+\frac{1}{x^2y^2}\right)\in Z\)
Vậy \(x^2y^2+\frac{1}{x^2y^2}\) là số nguyên (đpcm).
\(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=xy+2+\frac{1}{xy}\)
vì 2 nguyên nên \(xy+\frac{1}{xy}\)nguyên
\(\left(xy+\frac{1}{xy}\right)^2=x^2y^2+\frac{1}{x^2y^2}+2\)
nen \(x^2y^2+\frac{1}{x^2y^2}\)nguyên