Cho x, y là các số thực dương thỏa mãn xy=1. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\left(x+y+1\right)\left(x^2+y^2\right)+\frac{4}{x+y}\)
Cho x,y,z là các số thực dương thỏa mãn x+y+z+xyz=4. Tìm giá trị nhỏ nhất của biểu thức Q=\(\left(1+\frac{x}{y}+xz\right)\left(1+\frac{y}{z}+yz\right)\left(1+\frac{z}{x}+xz\right)\)
Cho x, y là các số thực dương thỏa mãn x+y<=1. Tìm giá trị nhỏ nhất của biểu thức P=\(\left(\frac{1}{X} +\frac{1}{Y}\right).\sqrt{1+X^2Y^2}\)
cho 3 số thực dương x;y;z thỏa mãn x+y+z<=3/2. tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
Giả sử x, y là các số thực dương thỏa mãn điều kiện \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge4\)
Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{x^2}{y}+\frac{y^2}{x}\)
Cho các số thực dương x,y,z thỏa mãn xyz=1 . Tìm giá trị nhỏ hất của biểu thức \(E=\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)
Cho x,y,z là những số thực dương thỏa mãn \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1.\)
Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{y^2z^2}{x\left(y^2+z^2\right)}+\frac{z^2x^2}{y\left(x^2+z^2\right)}+\frac{x^2y^2}{z\left(x^2+y^2\right)}\)
cho các số thực dương x,y,z thỏa mãn điều kiện x+y+z=1. tìm giá trị nhỏ nhất của biểu thức
\(A=\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
mn giúp nha mơn nhiều
Cho x,y,z là các số dương thỏa mãn xyz=1
Tìm giá trị nhỏ nhất của biểu thức \(E=\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)