Cho x, y là các số nguyên thỏa mãn: $\frac{x^2+xy+1}{y^2+xy+1}$x2+xy+1y2+xy+1 là một số nguyên. Hãy tính giá trị của biểu thức:
$A=\frac{2015xy}{2014x^2+2016y^2}$A=2015xy2014x2+2016y2
Toán lớp 8
Cho x, y là các số nguyên thỏa mãn: \(\frac{x^2+xy+1}{y^2+xy+1}\)là một số nguyên. Tính giá trị của biểu thức:
A = \(\frac{2015xy}{2014x^2+2016y^2}\)
Mình đang cần gấp. Cám ơn các bác rất nhiều
Cho x, y là các số nguyên dương thỏa mãn à một số nguyên. Hãy tính giá trị của biểu thức
A=\(\frac{2015xy}{2014x^2+2016y^2}\)
B1 cho các số nguyên a,b,c,d thỏa mãn đồng thời 2 điều kiện sau a+b+c=d+1 và a^2+b^2+c^2=d^2+2d-1 chứng minh rằng (a^2+1)(b^2+1)(c^2+1) là số chính phương
B2 cho biểu thức A=\(\frac{x^2}{y^2+xy}\)-\(\frac{y^2}{x^2-xy}\)-\(\frac{x^2+y^2}{xy}\)(xy\(\ne\)0,y\(\ne\)+-x)
A) rút gọn A
b)tính giá trị của A^2 biết x,y thỏa mãn điều kiện x^2+y^2=3xy
c) chứng minh rằng biểu thức A không nhân giá trị nguyên với mọi giá trị nguyên của x,y thỏa mãn điều kiện ở trên
B3 tìm các cặp số (x;y) thỏa mãn điều kiện 4x^2+2y^2-4xy-16x-2y+41=0
Cho x, y, z là các số nguyên đôi khác nhau thỏa mãn:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Tính giá trị biểu thức: \(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
Bài 1: Cho biểu thức:
\(P=\left(\frac{x+1}{x-2}-\frac{2x}{x+2}+\frac{5x+2}{4-x^2}\right):\frac{3x-x^2}{x^2+4x+4}\)
a, Rút gọn biểu thức P
b, tìm x để |P|= 2
c, Tìm giá trị nguyên của x để P nhận giá trị là số nguyên
Bài 2:
a, Phân tích đa thức sau thành nhân tử:
\(\left(x+2\right)\left(2x^2-5x\right)-x^3-8\)
b, Cho x, y, z là các số nguyên khác 0 đôi một khác nhau thỏa mãn:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Tính giá trị của biểu thức:
\(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
Bài 3:Tìm tất cả các cặp số nguyên (x;y) thỏa mãn:
\(y\left(x-1\right)=x^2+2\)
Bài 5 Cho x, y là các số thực thỏa mãn x^2 + y^2 + xy 3x 3y + 3=0. Chứng minh biểu thức P = (3x +2y 6)^1010 + ( xy+1)^1011 + 2021 có giá trị là một số nguyên.
cho x và y là 2 số nguyên dương thỏa mãn x+y = 2
tìm giá trị nhỏ nhất của biểu thức Q=\(\frac{2}{x2+y2}+\frac{3}{xy}\)
Bài 1. Cho x; y; z là các số thực dương thỏa mãn: x + y + z = 1. Tìm giá trị lớn nhất của biểu thức:
P = \(\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{xz}{y+1}\)
Bài 2: Giả sử các số x; y thỏa mãn: \(x^5+y^5=2x^2y^2\)
Chứng minh rằng: 1 - xy là bình phương của một số hữu tỷ
Bài 3: Cho \(\frac{n}{n^2-n+1}=a\). Tính P = \(\frac{n^2}{n^4+n^2+1}\)theo a.