1.Cho x,y > 0 và x^2 + y^2 = 1
Tìm GTNN của \(A=\frac{-2xy}{1+xy}\)
2.cho các số dương x, y,z thỏa man x+y+z=4. Chứng minh \(\frac{1}{xy}+\frac{1}{xz}>=1\)
3.3)cho các số x, y không âm thỏa mãn x+y=1 . tìm gtnn ,gtln của A =x^2+y^2
cho 2 số không am x,y thỏa mãn x+y=1 .Tìm GTNN và GTLN của biểu thứ P=\(\frac{x}{y+1}+\frac{y}{x+1}\)
Cho x;y là số thực không âm; thỏa mãn : x3+y3 +xy =x2 +y2
Tìm GTLN;GTNN của \(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\)
Cho x,y,z là các số thực dương thỏa mãn điều kiện x+y+z=1. Tìm GTNN của biểu thức \(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
Cho x,y,z lớn hơn 0 thỏa mãn 13x+5y+12z=9. Tìm GTLN của biểu thức \(B=\frac{xy}{2x+y}+\frac{3yz}{2y+z}+\frac{6zx}{2z+x}\)
Giúp mk nhanh nhé mọi người ơi
x, y là 2 số không âm thay đổi. Tìm GTLN, GTNN của biểu thức:
\(F=\frac{\left(x-y\right)\left(1-xy\right)}{\left(1+x\right)^2\left(1+y\right)^2}\)
Cho các số x,y,z không âm, ko đồng thời bằng ko thỏa mãn
\(\frac{1}{x+1}+\frac{1}{y+2}+\frac{1}{z+3}\le1\)
Tìm GTNN của biểu thức \(P=x+y+z+\frac{1}{x+y+z}\)
1, Cho \(x,y\ge0\) thỏa mãn \(2x+3y=1\) Tìm GTLN, GTNN của \(A=x^2+3y^2\)
2, Cho \(x^2+y^2=52\) Tìm GTLN, GTNN của \(A=2x+3y+4\)
3, Cho \(x,y>0\)và \(x+y=1\) Tìm GTNN của \(A=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
Với các số thực không âm x,y,z thỏa \(x^2+y^2+z^2=2\). Tìm GTLN và GTNN của:
\(P=\frac{x}{2+yz}+\frac{y}{2+xz}+\frac{z}{2+xy}\)
Cho x,y dương thỏa x+y=1 tìm gtnn của A=\(\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)