Đag lm nhà bj mất điện, đến h đc 2 tiếng r mà ch godd nào đụng à?!
Ta có: \(2\left(x^2+y^2\right)\ge\frac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow\left(x+y\right)^2\le2\Rightarrow x+y\le\sqrt{2}\)
Áp dụng BĐT Bunyakovsky ta có:
\(\left(x^2+y^2\right)^2=\left(\sqrt{x}\cdot\sqrt{x^3}+\sqrt{y}\cdot\sqrt{y^3}\right)^2\le\left(x+y\right)\left(x^3+y^3\right)\)
\(\Leftrightarrow1\le\left(x^3+y^3\right)\sqrt{2}\Rightarrow x^3+y^3\ge\frac{1}{\sqrt{2}}\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{\sqrt{2}}\)
Mặt khác ta lại có: \(\left(x,y\right)\in\left[0,1\right]\Rightarrow0\le x,y\le1\)
\(\Rightarrow\hept{\begin{cases}x^2\ge x^3\\y^2\ge y^3\end{cases}}\Rightarrow x^2+y^2\ge x^3+y^3\)
\(\Rightarrow x^3+y^3\le1\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=0\\y=1\end{cases}}\) hoặc \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)
P/s: \(x^3+y^3\le1\) có thể xảy ra dấu "="