Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tô Lê Minh Thiện

Cho x, y dương thỏa mãn \(x^2+y^2=1\). Chứng minh rằng: \(\frac{1}{\sqrt{2}}\le x^3+y^3< 1\)

Nguyễn Minh Đăng
18 tháng 10 2020 lúc 10:45

Đag lm nhà bj mất điện, đến h đc 2 tiếng r mà ch godd nào đụng à?!

Ta có: \(2\left(x^2+y^2\right)\ge\frac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow\left(x+y\right)^2\le2\Rightarrow x+y\le\sqrt{2}\)

Áp dụng BĐT Bunyakovsky ta có:

\(\left(x^2+y^2\right)^2=\left(\sqrt{x}\cdot\sqrt{x^3}+\sqrt{y}\cdot\sqrt{y^3}\right)^2\le\left(x+y\right)\left(x^3+y^3\right)\)

\(\Leftrightarrow1\le\left(x^3+y^3\right)\sqrt{2}\Rightarrow x^3+y^3\ge\frac{1}{\sqrt{2}}\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{\sqrt{2}}\)

Mặt khác ta lại có: \(\left(x,y\right)\in\left[0,1\right]\Rightarrow0\le x,y\le1\)

\(\Rightarrow\hept{\begin{cases}x^2\ge x^3\\y^2\ge y^3\end{cases}}\Rightarrow x^2+y^2\ge x^3+y^3\)

\(\Rightarrow x^3+y^3\le1\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=0\\y=1\end{cases}}\) hoặc \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)

P/s: \(x^3+y^3\le1\) có thể xảy ra dấu "="

Khách vãng lai đã xóa

Các câu hỏi tương tự
Trần Thùy
Xem chi tiết
Khôi 2k9
Xem chi tiết
Hello Kitty
Xem chi tiết
Huy Đào Quang
Xem chi tiết
Bùi Hồng Anh
Xem chi tiết
chiến
Xem chi tiết
Trần Thùy
Xem chi tiết
Võ Nhật Minh
Xem chi tiết
Vô Danh
Xem chi tiết